References
      [1]    Ramin T, et al. Comparative assessment of retinal fluid in patients treated with brolucizumab and aflibercept: 36-48 Week data from HAWK and HARRIER. Paper presentation at EURETINA congress. 2018.
      [2]    Arnold J et al. The role of sub-retinal fluid in determining treatment outcomes in patients with neovascular age-related macular degeneration–a phase IV randomised clinical trial with ranibizumab: the FLUID study. BMC Ophthalmol. 2016;143(4):679-680.
      [3]    Dugel P, et al. HAWK & HARRIER: 48-week results of 2 multi-centered, randomized, double-masked trials of brolucizumab versus aflibercept for neovascular AMD. Presented at: The American Academy of Ophthalmology 2017 Annual Meeting on November 10, 2017, New Orleans.
      [4]    Data on file.
      [5]    Escher D, et al. Single-chain antibody fragments in ophthalmology. Oral presentation at EURETINA congress. 2015. Abstract. Available at: http://www.euretina.org/nice2015/programme/free-papers-details.asp?id=4072&day=0 (link is external). Accessed November 2017.
      [6]    Nimz EL, et al. Intraocular and systemic pharmacokinetics of brolucizumab (RTH258) in nonhuman primates. The Association for Research in Vision and Ophthalmology (ARVO) annual meeting. 2016. Abstract 4996.
      [7]    Gaudreault J, et al. Preclinical pharmacology and safety of ESBA1008, a single-chain antibody fragment, investigated as potential treatment for age related macular degeneration. ARVO Annual meeting abstract. Invest Ophthalmol Vis Sci 2012;53:3025. http://iovs.arvojournals.org/article.aspx?articleid=2354604 (link is external).
      [8]    Tietz J, et al. Affinity and Potency of RTH258 (ESBA1008), a Novel Inhibitor of Vascular Endothelial Growth Factor A for the Treatment of Retinal Disorders. IOVS. 2015; 56(7): 1501.
      [9]    Qazi Y, et al. Mediators of ocular angiogenesis. J. Genet. 2009;88(4):495-515.
      [10]  Kim R. Introduction, mechanism of action and rationale for anti-vascular endothelial growth factor drugs in age-related macular degeneration. Indian J Ophthalmol. 2007;55(6):413-415.
      [11]  ClinicalTrials.gov. Identifier NCT02307682. Available at https://clinicaltrials.gov/ct2/show/NCT02307682 (link is external). Accessed November 2017.
      [12]  ClinicalTrials.gov. Identifier NCT02434328. Available at https://clinicaltrials.gov/ct2/show/NCT02434328 (link is external). Accessed November 2017.
      [13]  Schmidt-Erfurth U, et al. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014;98:1144-1167.
      [14]  Chopdar A, et al. Age related macular degeneration. BMJ. 2003;26(7387):485-488.
      [15]  World Health Organization. Priority eye diseases: Age-related macular degeneration. Available at http://www.who.int/blindness/causes/priority/en/index7.html (link is external). Accessed November 2017.
      [16]  NHS Choices. Macular Degeneration. Available at http://www.nhs.uk/Conditions/Macular-degeneration/Pages/Introduction.aspx (link is external). Accessed November 2017.
      [17]  National Eye Institute. Facts About Age-Related Macular Degeneration. Available at https://nei.nih.gov/health/maculardegen/armd_facts (link is external). Accessed November 2017.
      [18]  NHS Choices. Macular degeneration – Symptoms. Available at http://www.nhs.uk/Conditions/Macular-degeneration/Pages/Symptoms.aspx (link is external). Accessed November 2017.
      [19]  van Lookeren Campagne M, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 2014; 232(2):151-64. doi: 10.1002/path.4266.